Category Archives: Avancé

Fabriquer un objet connecté

ue se passe-t-il quand les objets se connectent à Internet ? Découvrez les mécanismes et les protocoles pour connecter un objet à Internet ou connecter des objets entre eux.

Vous utiliserez les technologies issues des FabLabs pour fabriquer “Nelson”, un petit objet intelligent et autonome, contrôlé par votre smartphone ou votre ordinateur.

Vous apprendrez également à re-programmer votre objet à l’infini pour l’adapter à vos besoins.

Rejoignez la communauté des bidouilleurs et des inventeurs de ce MOOC, inscrivez-vous !

Fin d'inscription
09 juin 2016

Début du Cours
12 mai 2016

Fin du cours
09 juin 2016

Mariages stables, prix équitables…

Plusieurs acheteurs doivent choisir un objet (par exemple, une maison de vacances), chacun avec ses critères (par exemple, sur la mer, et le plus proche possible de sa résidence principale). Si trop de monde veut le même, que se passe-t-il ? Quel sera le prix ?
Deux populations doivent s’associer en couples (par exemple, ça pourrait être des hommes et des femmes qui se marient), chacun ayant un certain intérêt pour chacun des autres. Quels couples se formeront de manière stable, c’est-à-dire sans que deux individus s’accordent pour s’associer en quittant leurs partenaires respectifs ?
Ces questions reposent sur la recherche d’un équilibre, où chaque individu cherche à maximiser sa propre utilité, mais sont en effet liées à l’optimisation de l’utilité totale. Et sont aussi liées à un problème classique appelé « transport optimal ». C’est le problème où de la masse doit être transportée d’une configuration à une autre, en dépensant le moins d’énergie possible. Transporter une particule de x à y se code mathématiquement de la même manière que marier M. x avec Mme. y, ou qu’attribuer la maison x à l’acheteur y.

Ce même problème a été popularisé par Gaspard Monge au 18e siècle, dans un cadre encore plus général, où le nombre de particules à transporter n’est même pas fini, mais on a affaire à une densité de masse continue, dans l’exemple particulier du déplacement optimal d’un tas de sable vers un trou donné (que Monge présente dans son Mémoire sur la théorie des déblais et des remblais). Et c’est ce cadre théorique et continue qui fait maintenant, au 21e siècle, l’objet de plusieurs études mathématiques, du fait de ses connections avec de nombreux domaines, tels l’économie mathématique mais également la géométrie, les équations aux dérivées partielles, le traitement d’images…

Bases en épidémiologie des maladies animales

Ce cours va vous permettre d’acquérir les bases de l’épidémiologie des maladies animales afin d’être en mesure entre autres de proposer les bons indicateurs de suivi et de calculer des méthodes prédictives de dépistage. A la fin du MOOC, les participants auront acquis les bases en épidémiologie nécessaires à la compréhension et à l’appréhension des dynamiques de propagation des maladies animales. Ils sauront comment construire, calculer et interpréter les principaux indicateurs épidémiologiques.

Fin d'inscription
02 déc 2016

Début du Cours
10 oct 2016

Fin du cours
12 déc 2016

Lagrange

L’Institut Henri Poincaré produit un documentaire exclusif de 32 minutes sur le mathématicien d’exception Joseph-Louis Lagrange, en coproduction avec le CNRS Images et en partenariat avec l’Institut Lagrange de Paris.
Des historiens retracent le parcours européen de Lagrange et montrent comment il est passé d’académicien protégé des puissants à un professeur chargé d’éduquer les nouveaux Citoyens au moment de la Révolution Française. Ils posent la question de l’implication des scientifiques dans la vie politique de l’époque.

Des scientifiques expliquent combien les travaux de Lagrange, notamment en analyse et en mécanique céleste, sont novateurs dans la façon de concevoir les problèmes à l’époque, et permettent de comprendre comment il s’est positionné à la frontière entre les mathématiques et la physique, et a pu profondément marquer les sciences et leur enseignement jusqu’à aujourd’hui. Malgré l’omniprésence de Lagrange dans les mathématiques et la physique moderne (Equations de Lagrange, Points de Lagrange, Interpolation de Lagrange, Lagrangien, etc…), la vie de ce savant de l’époque des Lumières reste méconnue…

Remerciements : Bruno Belhoste – Anne-Sophie Bonnet-Bendhia – Jenny Boucard – Alberto Conte – Laurent Guin – Eberhard Knobloch – Jacques Laskar – Thomas Morel – Maria Munoz – Luigi Pepe – Jérôme Pérez – Silvia Roero.

Production : Cédric Villani, Jean-Philippe Uzan
Direction scientifique : Frédéric Brechenmacher
Réalisateur : Quentin Lazzarotto
En collaboration avec le CNRS Images et en partenariat avec l’Institut Lagrange de Paris.
Remerciements : Ce film a bénéficié du soutien de l’Université Pierre et Marie Curie sur un financement du Labex Carmin.